Rubidium–strontium dating

Gentry by [Last Updated: It can be an especially difficult challenge when the Creationist author has professional credentials and has published in mainstream scientific journals. One such individual is Robert Gentry, who holds a Master’s degree in Physics and an honorary doctorate from the fundamentalist Columbia Union College. For over thirteen years he held a research associate’s position at the Oak Ridge National Laboratory where he was part of a team which investigated ways to immobilize nuclear waste. Gentry has spent most of his professional life studying the nature of very small discoloration features in mica and other minerals, and concluded that they are proof of a young Earth. About the Rocks Geologists classify rocks into three main categories – sedimentary, igneous, and metamorphic – based on the way in which they form. Sedimentary rocks are secondary in formation, being the product of precursor rocks of any type. Igneous rocks form from molten material, and are further subdivided into two main categories, the volcanic rocks which form from lava extruded at or near the surface; and plutonic rocks which form from magma, deep within the crust.

"Polonium Haloes” Refuted

Methods of Dating the Age of Meteorites Meteorites are among the oldest objects we know about – formed about 4. But how do scientists know this? This article describes the principles and methods used to make that determination. There are well-known methods of finding the ages of some natural objects. Trees undergo spurts in growth in the spring and summer months while becoming somewhat dormant in the fall and winter months.

When a tree is cut down, these periods are exhibited in a cross section of the trunk in the form of rings.

The periodic table of the elements. The periodic table is an arrangment of the chemical elements ordered by atomic number so that periodic properties of the .

Rubidium and cesium often occur together in nature. Rubidium, however, is more widely scattered and seldom forms a natural mineral; it is found only as an impurity in other minerals, ranging in content up to 5 percent in such minerals as lepidolite , pollucite, and carnallite. Brine samples have also been analyzed that contain up to 6 parts per million of rubidium. In the principal commercial process of rubidium production, small amounts of rubidium are obtained from the mixture of alkali metal carbonates remaining after lithium salts are extracted from lepidolite.

Primarily a potassium carbonate, this by-product also contains approximately 23 percent rubidium and 3 percent cesium carbonates. The primary difficulty associated with the production of pure rubidium is that it is always found together with cesium in nature and is also mixed with other alkali metals.

The periodic table of the elements

Rubidium—strontium method The radioactive decay of rubidium 87Rb to strontium 87Sr was the first widely used dating system that utilized the isochron method. Because rubidium is concentrated in crustal rocks, the continents have a much higher abundance of the daughter isotope strontium compared with the stable isotopes. A ratio for average continental crust of about 0. This difference may appear small, but, considering that modern instruments can make the determination to a few parts in 70, , it is quite significant.

Carbon dating is used to determine the age of biological artifacts up to 50, years old. This technique is widely used on recent artifacts, but educators and students alike should note that this technique will not work on older fossils (like those of the dinosaurs alleged to be millions of years old).

The Radiometric Dating Game Radiometric dating methods estimate the age of rocks using calculations based on the decay rates of radioactive elements such as uranium, strontium, and potassium. On the surface, radiometric dating methods appear to give powerful support to the statement that life has existed on the earth for hundreds of millions, even billions, of years. We are told that these methods are accurate to a few percent, and that there are many different methods.

We are told that of all the radiometric dates that are measured, only a few percent are anomalous. This gives us the impression that all but a small percentage of the dates computed by radiometric methods agree with the assumed ages of the rocks in which they are found, and that all of these various methods almost always give ages that agree with each other to within a few percentage points. Since there doesn’t seem to be any systematic error that could cause so many methods to agree with each other so often, it seems that there is no other rational conclusion than to accept these dates as accurate.

However, this causes a problem for those who believe based on the Bible that life has only existed on the earth for a few thousand years, since fossils are found in rocks that are dated to be over million years old by radiometric methods, and some fossils are found in rocks that are dated to be billions of years old. If these dates are correct, this calls the Biblical account of a recent creation of life into question.

After study and discussion of this question, I now believe that the claimed accuracy of radiometric dating methods is a result of a great misunderstanding of the data, and that the various methods hardly ever agree with each other, and often do not agree with the assumed ages of the rocks in which they are found. I believe that there is a great need for this information to be made known, so I am making this article available in the hopes that it will enlighten others who are considering these questions.

Even the creationist accounts that I have read do not adequately treat these issues. At the start, let me clarify that my main concern is not the age of the earth, the moon, or the solar system, but rather the age of life, that is, how long has life existed on earth. Many dating methods seem to give about the same ages on meteorites.

Isochron Dating

Na , potassium K , rubidium Rb , cesium Cs , and francium Fr. The alkali metals are so called because reaction with water forms alkalies i. Sodium and potassium are the sixth and seventh most abundant of Rubidium was discovered spectroscopically by German scientists Robert Bunsen and Gustav Kirchhoff and named after the two prominent red lines of its spectrum. Rubidium and cesium often occur together in nature.

Rubidium is a chemical element with symbol Rb and atomic number Rubidium is a soft, silvery-white metallic element of the alkali metal group, with a standard atomic weight of Elemental rubidium is highly reactive, with properties similar to those of other alkali metals, including rapid oxidation in Earth, natural rubidium comprises two isotopes: 72% is the stable isotope.

Example[ edit ] For example, consider the case of an igneous rock such as a granite that contains several major Sr-bearing minerals including plagioclase feldspar , K-feldspar , hornblende , biotite , and muscovite. Rubidium substitutes for potassium within the lattice of minerals at a rate proportional to its concentration within the melt. The ideal scenario according to Bowen’s reaction series would see a granite melt begin crystallizing a cumulate assemblage of plagioclase and hornblende i.

This then causes orthoclase and biotite, both K rich minerals into which Rb can substitute, to precipitate. The resulting Rb-Sr ratios and Rb and Sr abundances of both the whole rocks and their component minerals will be markedly different. This, thus, allows a different rate of radiogenic Sr to evolve in the separate rocks and their component minerals as time progresses. Calculating the age[ [ edit ]he age of a sample is determined by analysing several minerals within the sample.

How Old is the Earth

Example[ [ edit ]or example, consider the case of an igneous rock such as a granite that contains several major Sr-bearing minerals including plagioclase feldspar , K-feldspar , hornblende , biotite , and muscovite. Rubidium substitutes for potassium within the lattice of minerals at a rate proportional to its concentration within the melt. The ideal scenario according to Bowen’s reaction series would see a granite melt begin crystallizing a cumulate assemblage of plagioclase and hornblende i.

Contents Introduction 1 Analysis of chemicals 3 Unit 1 topic Atomic structure and the periodic table 3 The age of the Earth 3 Determining the composition of the solar wind 4.

Carbon , Radiometric Dating and Index Fossils Carbon dating is used to determine the age of biological artifacts up to 50, years old. This technique is widely used on recent artifacts, but educators and students alike should note that this technique will not work on older fossils like those of the dinosaurs alleged to be millions of years old.

This technique is not restricted to bones; it can also be used on cloth, wood and plant fibers. Carbon dating has been used successfully on the Dead Sea Scrolls, Minoan ruins and tombs of the pharaohs among other things. Carbon is a radioactive isotope of carbon. The half-life of carbon is approximately 5, years.

The Age of the Earth

At the time that Darwin’s On the Origin of Species was published, the earth was “scientifically” determined to be million years old. By , it was found to be 1. In , science firmly established that the earth was 3. Finally in , it was discovered that the earth is “really” 4. In these early studies the order of sedimentary rocks and structures were used to date geologic time periods and events in a relative way.

At first, the use of “key” diagnostic fossils was used to compare different areas of the geologic column.

How radiometric dating works in general: Radioactive elements decay gradually into other elements. The original element is called the parent, and the result of the decay process is .

These are K-Ar data obtained on glauconite, a potassium-bearing clay mineral that forms in some marine sediment. Woodmorappe fails to mention, however, that these data were obtained as part of a controlled experiment to test, on samples of known age, the applicability of the K-Ar method to glauconite and to illite, another clay mineral. He also neglects to mention that most of the 89 K-Ar ages reported in their study agree very well with the expected ages.

Evernden and others 43 found that these clay minerals are extremely susceptible to argon loss when heated even slightly, such as occurs when sedimentary rocks are deeply buried. As a result, glauconite is used for dating only with extreme caution. The ages from the Coast Range batholith in Alaska Table 2 are referenced by Woodmorappe to a report by Lanphere and others Whereas Lanphere and his colleagues referred to these two K-Ar ages of and million years, the ages are actually from another report and were obtained from samples collected at two localities in Canada, not Alaska.

“Polonium Haloes” Refuted

Rubidium silver iodide RbAg4I5 has the highest room temperature conductivity of any known ionic crystal , a property exploited in thin film batteries and other applications. Rubidium forms salts with halides, producing rubidium fluoride , rubidium chloride , rubidium bromide , and rubidium iodide. Isotopes of rubidium Although rubidium is monoisotopic , rubidium in the Earth’s crust is composed of two isotopes: It readily substitutes for potassium in minerals , and is therefore fairly widespread.

Rb has been used extensively in dating rocks ; 87Rb beta decays to stable 87Sr.

ルビジウム(ラテン語: rubidium )は原子番号 37 の元素記号 Rb で表される元素である。 アルカリ金属元素の1つで、柔らかい銀白色の典型元素であり、原子量は。 ルビジウム単体は、例えば空気中で急速に酸化されるなど非常に反応性が高く、他のアルカリ金属に似た特性を有している。.

Rubidium silver iodide RbAg4I5 has the highest room temperature conductivity of any known ionic crystal , a property exploited in thin film batteries and other applications. Rubidium forms salts with halides, producing rubidium fluoride , rubidium chloride , rubidium bromide , and rubidium iodide. Isotopes of rubidium Although rubidium is monoisotopic , rubidium in the Earth’s crust is composed of two isotopes: It readily substitutes for potassium in minerals , and is therefore fairly widespread.

Rb has been used extensively in dating rocks ; 87Rb beta decays to stable 87Sr. During fractional crystallization , Sr tends to concentrate in plagioclase , leaving Rb in the liquid phase. The highest ratios 10 or more occur in pegmatites.

Rubidium–strontium dating

This age is obtained from radiometric dating and is assumed by evolutionists to provide a sufficiently long time-frame for Darwinian evolution. And OE Christians theistic evolutionists see no problem with this dating whilst still accepting biblical creation, see Radiometric Dating – A Christian Perspective. This is the crucial point: Some claim Genesis in particular, and the Bible in general looks mythical from this standpoint.

A full discussion of the topic must therefore include the current scientific challenge to the OE concept.

It follows that uranium-lead, potassium-argon (K-Ar), and Rubidium-Strontium (Rb-Sr) decay can be used for very long time periods, whilst radiocarbon dating can only be used up to about 70, years.

References Generic Radiometric Dating The simplest form of isotopic age computation involves substituting three measurements into an equation of four variables, and solving for the fourth. The equation is the one which describes radioactive decay: The variables in the equation are: Pnow – The quantity of the parent isotope that remains now. This is measured directly. Porig – The quantity of the parent isotope that was originally present.

This is computed from the current quantity of parent isotope plus the accumulated quantity of daughter isotope. Standard values are used, based on direct measurements. Solving the equation for “age,” and incorporating the computation of the original quantity of parent isotope, we get:

Memento Mori


Greetings! Do you need to find a sex partner? Nothing is more simple! Click here, free registration!